Closed Form Solution of Nonlinear-Quadratic Optimal Control Problem by State-control Parameterization using Chebyshev Polynomials
نویسندگان
چکیده
In this paper the quasilinearization technique along with the Chebyshev polynomials of the first type are used to solve the nonlinear-quadratic optimal control problem with terminal state constraints. The quasilinearization is used to convert the nonlinear quadratic optimal control problem into sequence of linear quadratic optimal control problems. Then by approximating the state and control variables using Chebyshev polynomials, the optimal control problem can be approximated by a sequence of quadratic programming problems. The paper presents a closed form solution that relates the parameters of each of the quadratic programming problems to the original problem parameters. To illustrate the numerical behavior of the proposed method, the solution of the Van der Pol oscillator problem with and without terminal state constraints is presented.
منابع مشابه
Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
متن کاملAn Iterative method for Solving the Container Crane Constrained Optimal Control Problem Using Chebyshev Polynomials
Abstract— In this paper, a computational method for solving constrained nonlinear optimal control problems is presented with an application to the container crane. The method is based on Banks' et al. iterative approach, in which the nonlinear system state equations are replaced by a sequence of time-varying linear systems. Therefore, The constrained nonlinear optimal control problem can be con...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملAn Iterative Technique for Solving a Class of Nonlinear Quadratic Optimal Control Problems Using Chebyshev Polynomials
In this paper, a method for solving a class of nonlinear optimal control problems is presented. The method is based on replacing the dynamic nonlinear optimal control problem by a sequence of quadratic programming problems. To this end, the iterative technique developed by Banks is used to replace the original nonlinear dynamic system by a sequence of linear time-varying dynamic systems, then e...
متن کاملThe Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014